Evidence that the nerve controls molecular identity of progenitor cells for limb regeneration.
نویسندگان
چکیده
Adult urodele amphibians can regenerate their limbs after amputation by a process that requires the presence of axons at the amputation plane. Paradoxically, if the limb develops in the near absence of nerves (the 'aneurogenic' limb) it can subsequently regenerate in a nerve-independent fashion. The growth zone (blastema) of regenerating limbs normally contains progenitor cells whose division is nerve-dependent. A monoclonal antibody that marks these nerve-dependent cells in the normal blastema does not stain the mesenchymal cells of developing limb buds and only stains the amputated limb bud when axons have reached the plane of amputation. This report shows that the blastemal cells of the regenerating aneurogenic limb also fail to react with the antibody in situ. These data suggest that the blastemal cells arising during normal regeneration have been altered by the nerve. This regulation may occur either at the time of amputation (when the antigen is expressed) or during development (when the limb is first innervated).
منابع مشابه
Principles and methods of dental nerve tissue regeneration : a review
Background and Aim Today, tissue engineering is considered a significant approach in modern medicine, which is why research in biomaterials has focused on the development of advanced scaffolding for regenerative medicine. Many natural and synthetic polymers with a variety of origins have been used to make these scaffolds or are recommended by researches. These compositions usually have the pr...
متن کاملMitogenic growth factors and nerve dependence of limb regeneration.
Regeneration of the amphibian limb after amputation depends on division of blastemal cells, the progenitor cells of the regenerate. This division is controlled, at least in the early stages of regeneration, by the nerve supply to the blastema. A monoclonal antibody to newt blastema cells has provided evidence that Schwann cells and muscle fibers contribute to the blastema, and identifies blaste...
متن کاملNerve dependence in tissue, organ, and appendage regeneration
Many regeneration contexts require the presence of regenerating nerves as a transient component of the progenitor cell niche. Here we review nerve involvement in regeneration of various structures in vertebrates and invertebrates. Nerves are also implicated as persistent determinants in the niche of certain stem cells in mammals, as well as in Drosophila. We consider our present understanding o...
متن کاملAugmenting Peripheral Nerve Regeneration Using Rat Hair Follicle Stem Cells (rHFSCs) in Rats
Introduction: Nowadays, cell therapy is the most advanced treatment of peripheral nerve injury. The aim of this study was to determine the effects of transplantation of hair follicle stem cells on the regeneration of the sciatic nerve injury in rats. Methods: The bulge region of the rat whisker was isolated and cultured. Morphological and biological features of the cultured bulge cells were ob...
متن کاملUnraveling the Molecular Basis for Regenerative Cellular Plasticity
1068 cells pre-exist as reserve cells or stem cells that only need to be activated in response to injury or tissue depletion. In other cases, the progenitor cells can be created de novo through a process in which fully differentiated cells reverse their normal developmental processes and revert to proliferating progenitor cells. This latter process, known as cellular dedifferentiation, is espec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 103 3 شماره
صفحات -
تاریخ انتشار 1988